2(4^2x-4)=106

Simple and best practice solution for 2(4^2x-4)=106 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(4^2x-4)=106 equation:



2(4^2x-4)=106
We move all terms to the left:
2(4^2x-4)-(106)=0
We multiply parentheses
8x^2-8-106=0
We add all the numbers together, and all the variables
8x^2-114=0
a = 8; b = 0; c = -114;
Δ = b2-4ac
Δ = 02-4·8·(-114)
Δ = 3648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3648}=\sqrt{64*57}=\sqrt{64}*\sqrt{57}=8\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{57}}{2*8}=\frac{0-8\sqrt{57}}{16} =-\frac{8\sqrt{57}}{16} =-\frac{\sqrt{57}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{57}}{2*8}=\frac{0+8\sqrt{57}}{16} =\frac{8\sqrt{57}}{16} =\frac{\sqrt{57}}{2} $

See similar equations:

| .5(x+25)+3=5 | | 1/(16x)=8 | | y2=153 | | 1500=(5)100x | | 7=x+33/8 | | 20(x)=70+10(x)= | | .5(10x+13)=3.7(.2+5) | | 6=k14 | | -4x-12=40 | | 2+j=16 | | 7x-96=30x+42 | | x-79/2=6 | | 360=8x-2 | | 3(x-93)=18 | | c/7+29=34 | | 5.5x+100=30.25+10 | | 6x2+10x-4=0 | | 5.5x+100=30.25 | | -4n-9n=33 | | x/4-14=-9 | | 8x^2+63-8=0 | | 3x+48=1/3x | | 35-3x=89 | | 3.5x=9.90 | | 0.12t+-0.6=-0.06 | | 14x-14=2x=46 | | s/3+-4=2 | | 35−3n=8 | | 35−-3n=89 | | x-0.12(x)=2000 | | ()3x=60 | | ()x+x+45=155 |

Equations solver categories